SDNUOJ 1045 石子合并1(区间动态规划)

本文介绍了SDNUOJ 1045题目的解决方案,该问题涉及区间动态规划。通过分析题目要求相邻合并石子堆的限制,将问题转化为区间动态规划问题,利用状态转移方程求解最小代价。文章提供了思路解析、代码实现,并探讨了问题的拓展情况。
摘要由CSDN通过智能技术生成

题目

描述
有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
输出总代价的最小值,占单独的一行

样例输入

3
1 2 3
7
13 7 8 16 21 4 18

样例输出

9
239

思路

如果该题没有要求相邻合并,那么该问题就是典型的哈夫曼编码思想,先把数量小的石子合并,数量大的石子最后合并,这样最后的代价就是最小的。对应的就是哈夫曼树的构建过程,该算法保证了二叉树的权值最优性。

但是题目特意要求了相邻合并,那么该问题变为为经典区间动态规划问题。区间动态规划问题的典型特征为:要求一个大区间的最优解,而大区间是由小区间组合而来,所以只要小区间为最优解,那么组成的大区间也必然为最优解。
比如我们要求[1,3]之间的最优合并,那么[1,3]可以有[1,1]和[2,3],或者[1,2]和[3,3]合并而来,所以只要求这两种情况最小值即可。 所以可以得出我们的状态转移方程为:

dp[i][j]=0,i=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值